Verbose Documentation
Release 0.4.0

Stephen Mizell

September 17, 2014

Contents

1 Content

LI Overview o e
1.2 Status
1.3 Specification L.
1.4 Examples
1.5 Schema

2 Issues, Questions, Comments

3 Contributing

Verbose Documentation, Release 0.4.0

Verbose is a general-purpose, multi-use hypermedia format that can be used to build robust and highly-descriptive
APIs.

Note: Verbose is currently under development, which means things could change before it’s ready to be used. Please
keep this in mind if you desire to start using it.

Contents 1

Verbose Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Content

1.1 Overview

1.1.1 Description
Verbose is a general-purpose, multi-use hypermedia format that can be used to build robust and highly-descriptive
APIs. Because it aims to cover as many scenarios as possible, it can be used in many situations, such as:

* Resource representation

* Link Relation

* Profile

* Documentation

¢ Object Model

It can be as minimal or verbose as necessary to fit the situation. Because of it’s design, it should be able to cover
almost anything that other hypermedia formats can cover.

1.1.2 Design

Verbose comes from a need to have an object that can handle aspects of many of the popular hypermedia formats.
To do this, these other hypermedia formats were taken down to their bare essentials. These essentials make up the
Hypermedia Core Definitions.

http://hyperschema.org/core/

Verbose Documentation, Release 0.4.0

Hyperextend

From these core definitions, the Hyperextend library was created. Hyperextend is a library of components that can be
used to extend any other format to add in hypermedia elements (e.g. adding form-like semantics to HAL).

Verbose was then created by combining all of these components into one format. This essentially makes it a format
that is derived from all of the media types found on the Hyperschema.org site.

1.2 Status

Current Version: 0.4
Current Release: 0.4.0
Build Date: September 17, 2014

1.3 Specification

Current Version: 0.4
Current Release: 0.4.0
Build Date: September 17,2014

Proposed Registration: application/vnd.verbose+json

4 Chapter 1. Content

http://hyperschema.org/extensions/hyperextend/
http://hyperschema.org/

Verbose Documentation, Release 0.4.0

The document outlines the Verbose hypermedia format.

Note: This is currently in active development. There may be parts of this change before it is ready for use.

Note: The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC

2119.

1.3.1 Definitions

Since Verbose reuses a lot of properites, this section will first define some of these common properties.

Hypermedia

These properties are used to define hypermedia information and hints related to links, queries, actions, and resources.
embedAs A way to tell the client how an item should be embedded. These are the possible values:
1. image
2. audio
3. video
4. text
5. application
If left blank, it is assumed to be a normal link.
rels An array of link relations for an item.

responseTypes An array of available media types on the server.

Types

typesOf A way to specify what type of item an item is. Useful when specifying Schema.org values or linking to
profiles. It is an array of strings. If multiple types are specified, the first type is of most priority and the last type
is of least, in the event that there are conflicting restraints. Having several types is an option, but it may be better
to create and define a new type if there are too many.

By default, Verbose supports the JSON primitives:
1. string
2. number
3. boolean
4. array
5. object

You can of course create your own types and define certain constraints and validations on the object. See the

1.3. Specification 5

Verbose Documentation, Release 0.4.0

Extensibility
Each of these properties use Verbose Path to reference items from the same document or other documents. Please see
the documentation on this to understand how Verbose Path works.

extend A way to extend the item with other items. It is an object, the contents of which can be defined outside of
this spec.

forEach An array of Verbose Paths that specify for what item a template can be used. These templates can be for
links, queries, actions, or resource templates.

If the Verbose Path string specified references more than one item in the document, it means that template can
be used for each of those items.

{

"verbose": {
"href": "/customers",
"templates": [
{
"forEach": ["#", "#/includes[rel=item]"]

}

In this example above, the forEach array contains a reference to #, which references the root resource of
the document, and #/includes[rel=item], which references any included items with a link relation of
item. Please see the Verbose Path section to see how it is used.

mapsTo An array of Verbose Path strings (see section for details on how this is used)

1.3.2 Resource
A Verbose Resource is an object for defining everything dealing with a particular resource. It uses these properties
from the definition list.
1. id - Unique identifier for resource
2. name - Name of resource
3. typesOf - For pointing to another semantic or schema for the resource
It also supports.
id Unique identifier for resource
name Name of resource
typesOf For pointing to another semantic or schema for the resource
meta A Meta object
href Link to the resource
prefixes An array of Prefix objects
semantics An array of Semantic objects
properties A Properties object
links An array of Link objects

queries An array of Query objects

6 Chapter 1. Content

Verbose Documentation, Release 0.4.0

actions An array of Action objects

templatedLinks An array of Templated Link objects
templatedActions An array of Templated Action objects
templates An array of Resource Template objects
includes An array of full Resource objects

errors An Error object

See the Examples page for examples of a resource

1.3.3 Namespace

All Verbose documents MUST have a verbose namespace.

{

"verbose": {}

}

1.3.4 Prefixes

Prefixes can be used to shorten URLs. When used, they are available throughout the entire document.
prefixes This is an array of prefix objects.
prefix The short prefix name.

href The URL to be used as the prefix.

Example
{
"verbose": {
"version": "0.4",
"prefixes": [
{
"prefix": "schema",
"href": "http://schema.org/"

1.3.5 Properties

The properties object is simply a JSON object. Its semantics are defined by the Semantic object.

1.3.6 Semantics

The semantics array is an array of Semantic objects. It supports the following properites listed in the Definitions
list:

1. id - Unique identifier for semantic

1.3. Specification 7

Verbose Documentation, Release 0.4.0

name - Name of property being defined

title - Title of semantic

description - Description of semantic

label - Human-readable label or prompt for semantic

typesOf - For pointing to another semantic or schema for the property

N oA »d

mapsTo - Property to which the semantic point

Example

Below is an example showing a resource that has properties and semantics for those properties. In this
example, the property is email, which is a st ring and uses the HTMLS5 formatting for email. The instance data
for that property is john@doe . com.

{

"verbose": {
"semantics": [
{
"name": "email",
"type": "string",
"format": "email",
"label": "Email",
"mapsTo": "#/properties.email"
}
1,
"properties": {
"email": "john@doe.com"
}
}
}
1.3.7 Field

A Field object supports the following properites listed in the Definitions list:
1. id - Unique identifier for field
2. name - Name of field
3. title - Title of field
4. description - Description of field
5. label - Human-readable label or prompt for field
6. typesOf - Types of the field
7. extend - Added details determined by the type
A field object also provides the following properties:
defaultValue The optional default value of the field. Thisisa string.
currentValue The current value of the field. This is a string.

value The value of the field which cannot be changed. The defaultValue and currentValue properties
allow for the values to be changed or set, though the value property is unchangeable. It is a way for the API
to provide unchangeable field data, equivalent to a hidden field in HTML.

8 Chapter 1. Content

Verbose Documentation, Release 0.4.0

options An array of option objects. Option objects have a name and value property for each option.

1.3.8 Transitions

A transition is an available progression from one state to another state. There are many characteristics of transitions,
and several different categories that hypermedia formats use. Transitions have been broken down into links, queries,
actions, templated links, templated actions, and embedded resources below.

Links
The 1inks property is an array of Link objects. It supports all of the properties of the Resource object, along with
the following properites listed in the Definitions list:

1. label - Human-readable label or prompt for link

2. rels - Link relations of the link

3. responseTypes - Types with which the server may respond

4. embedAs - Ways to inform the client how an item should be transcluded

5. typesOf - For pointing to another semantic or schema for the link

A link is always considered safe. The HTTP method GET should be used for these requests.

Example

The link below provides a link to a customer resource.
¢ It shows name being used, which has a name of customer
* It defines the link relations for this link using the rels property
* Ttuses responseTypes to hint at what representations are available from the server

* Ituses href to provide the actual URL to the resource

"verbose": {
"links": [
{
"name": "customer",
"rels": ["item", "http://example.com/rels/customer"],
"responseTypes": [
"application/Jjson",
"application/hal"
J 14
"href": "/customer/4"
}
]
}
}
Queries

Queries are safe GET requests that provide a way for specifying query parameters.

1.3. Specification 9

Verbose Documentation, Release 0.4.0

The queries property is an array of Query objects. It supports all of the properties of the Resource object, along with
the following properites listed in the Definitions list:

1. label - Human-readable label or prompt for link

rels - Link relations of the link

responseTypes - Types with which the server may respond
embedAs - Ways to inform the client how an item should be transcluded

typesOf - For pointing to another semantic or schema for the link

AN

queryParams - An array of £ield objects to be used for query parameters

Example

This example shows how queryParams are used.

{
"verbose": {
"queries": [
{

"name": "customer",

"rels": ["search"],

"responseTypes": [
"application/json",
"application/hal"

] 14

"href": "/customers",

"queryParams": [

{

"name": "email",
"label": "Email"

Actions

An action is a way to provide an unsafe action.

The actions property is an array of Action objects. It supports the following properites listed in the Definitions list:
1. id - Unique identifier for item

name - Name of action

title - Title of action

description - Description of action

label - Human-readable label or prompt for action

rels - Link relation of the action

responseTypes - Types with which the server may respond

® N A » N

requestTypes - Types in which the server accepts

10 Chapter 1. Content

Verbose Documentation, Release 0.4.0

9. embedAs - Ways to inform the client how an item should be transcluded
10. href - URL for the action
11. typesOf - For pointing to another semantic or schema for the action
12. method - HTTP method for the action

13. bodyParams - An array of field objects that is used for specifying the parameters for the body of a
request

The HTTP method for the action MUST be POST, PUT, or DELETE.

Example

This action can be used to create a customer.
¢ It uses the POST method

e It has two body parameters: first_name and last_name which are both strings

"verbose": {
"actions": [
{
"title": "Add Customer",
"rels": ["append"],
"href": "/customers",
"method": "POST",
"bodyParams": [

{
"name": "first_name",
"label": "First Name"

"name": "last_name",
"label": "Last Name"

Templated Links
The templatedLinks property is an array of Templated Link objects. It supports the following properites listed in
the Definitions list:
1. id - Unique identifier for item
. name - Name of link
. title - Title of link

2

3

4. description - Description of link

5. label - Human-readable label or prompt for link
6

. rels - Link relations of the link

1.3. Specification 11

Verbose Documentation, Release 0.4.0

7. responseTypes - Types with which the server may respond
8. embedAs - Ways to inform the client how an item should be transcluded
9. hreft - URI template for the link

10. typesOf - For pointing to another semantic or schema for the link

11. uriParams - An array of field objects to be used for URI template parameters

Example

This shows a resource that has a templated link for a customer resource This is very similar to a regular link, but it
provides a hre ft property, which is a templated URL, along with URI parameters.

In this case, there is one URI parameters call id, which is a number.

{
"verbose": {
"templatedLinks": [
{

"name": "customer",

"rels": ["item", "http://example.com/rels/customer"],

"responseTypes": [
"application/Jjson",
"application/hal"

1,
"hreft": "/customer/{id}",
"uriParams": [

{
"name": "id"
}
i

Templated Actions
The templatedActions property is an array of Templated Action objects. It supports the following properites
listed in the Definitions list:
1. id - Unique identifier for item
name - Name of action
title - Title of action
description - Description of action
label - Human-readable label or prompt for action
rels - Link relation of the action
responseTypes - Types with which the server may respond

requestTypes - Types in which the server accepts

¥ ® 2Nk w N

embedAs - Ways to inform the client how an item should be transcluded

._
e

hreft - URI template for the action

12 Chapter 1. Content

Verbose Documentation, Release 0.4.0

11. typesOf - For pointing to another semantic or schema for the action
12. method - HTTP method for the action

13. bodyParams - An array of field objects that is used for specifying the parameters for the body of a
request

14. uriParams - An array of field objects that is used for specifying the parameters for the URI template

Example

This templated action provides an action for editing any customer. This allows for including actions that can be used
for multiple resources without including the action multiple times.

In this example, there are both URI parameters and body parameters for building the request.

{

"verbose": {
"templatedActions": [
{
"title": "Edit Customer",
"rels": ["http://example.com/rels/customer"],
"hreft": "/customer/{id}",
"method": "PUT",
"uriParams": [
{
"name": "id"
}
JV
"bodyParams": [
{
"name": "first_name",
"label": "First Name"
}I
{
"name": "last_name",
"label": "Last Name"

Embedded Resources
Included resources are just to be considered as included resources and MAY be full representations. The reason for

this and the partials property is that it allows for explicitly telling the client that the resource needs to be requested
if the full resource is desired.

1.3.9 Resource Template

This item uses the forEach from the Definitions list. It also supports all of the properties that a transition supports
except for the href and hreft properties.

1.3. Specification 13

Verbose Documentation, Release 0.4.0

Example

This is an example of a resource that provides templates for working with embedded resources. It shows this template

can be used for any included resource with item as a rel, and uses forEach to specify this.

{

"verbose": {

"href": "/customers",

"templates":

{

"rels":

"forEach": ["#", "#/includes[rel=item]"
"requestTypes": ["application/x-www—form-urlencoded"

[

["update" 1,

"method": "PUT"
"fields": [

{

"name": "first_name",
"type": "string",
"label": "First Name"

"name": "last_name",
"type": "string",
"label": "Last Name"

}
1,
"includes":
{
"rels":
"href":

["item"],
"/customers/1",

"properties": {
"first_name": "John",
"last_name": "Doe"

"rels":
"href":

["item" J,
"/customers/2",

"properties": {
"first_name": "Jane",
"last_name": "Doe"

1.3.10 Meta

The meta property is a resource object that can be used to specify meta data, such as meta links or properties. The

properties and links for the error are left up to the designer.

{

"versbose": {

"version": "0.4",

14

Chapter 1. Content

Verbose Documentation, Release 0.4.0

"meta": {
"transitions": [
{
"rels": ["self"],
"href": "/customers"

1.3.11 Errors

The errors property is a resource object that can be used specifically for errors. The properties and links for the
error are left up to the designer.

{

"versbose": {
"version": "0.4",
"errors": {
"properties": {
"message": "There was an error when creating this resource"

}

1.3.12 Verbose Path

Verbose Path is a way to reference objects throughout a Verbose document or in other Verbose documents. It is very
simple and tries to only provide what is needed to reference items throughout a document.

Root Resource

The # alone SHOULD be considered the path to the root resource of a Verbose document. The example below shows
a template that can be used for the root resource.

{
"verbose": {
"version": "0.4",
"templates": [

{

"forEach": ["#" 1],
"method": "POST",
"rels": ["create" 1,
"fields": [
{ "name": "first_name" 1},
{ "name": "last_name" }

1.3. Specification 15

Verbose Documentation, Release 0.4.0

ID

This shows the template can be used for the item where the ID is equal to person.

{
"verbose": {
"version": "0.4",
"templates": [

{

"forEach": ["#person"],
"method": "POST",
"rels": ["edit"],
"fields": [
{ "name": "first_name" 1},
{ "name": "last_name" }
]
}
]I
"includes": [
{
"id": "person",

Nested Properties

Properties of an object can be specified with a dot. Shown below, the semantics ful 1Name and email are mapped

to properties of the cust omer object.

{

"verbose": {
"version": "0.4",
"semantics": [
{
"name": "customer",
"type": "object",
"mapsTo": "#/properties.customer"
}I
{
"name": "fullName",
"type": "string",
"mapsTo": "#/properties.customer.fullName"
}I
{
"name": "email",
"type": "string",
"mapsTo": "#/properties.customer.email"
}
]I
"properties": {
"customer": {
"fullName": "John Doe",
"email": "Jjohndoe@example.com"
}
}
16

Chapter 1. Content

Verbose Documentation, Release 0.4.0

Arrays

Arrays can also be referenced.

{

"verbose": {

"version":
"semantics":
{
"name" :
lltype "m.
"mapsTo"

"name" :

lltype n :
"mapsTo"

"name" :
"type":
"mapsTo"
}
]I
"properties"
"customers
{
"fullN
"email

"fullN
"email

Filtering Arrays

HO'4",

[

"customers",
"array",

: "#/properties.customers[]"

"fullName",
"string",

: "#/properties.customers[].fullName"
"email",

"string",

: "#/properties.customers[].email"

: q

n : [

ame": "John Doe",

".

"jJohndoel@example.com"

ame": "Jane Doe",
": "janedoe@example.com"

The square brackets can be used to filter arrays. The example below shows the template is usable for all included
resources with the name equal to customer.

{

"verbose": {

"version":
"templates":

{

"forEach": [

"method"
"rels":

0.4,
[

"#/includes [name=customer]"
: "PUT",
["update" 1,

"fields": [

1y

1.3.

Specification

17

Verbose Documentation, Release 0.4.0

{ "name": "first_name" },
{ "name": "last_name" }
]
}
]I
"includes": [
{
"name": "customer",
"properties": {
"customer": {
"fullName": "John Doe",
"email": "johndoel@example.com"

1.4 Examples

1.4.1 Compared to Other Formats

Because of Verbose’s Design, it can handle just about anything other formats can handle.

HAL+JSON

This example is the example from the HAL spec. Because the HAL spec says you should not assume the embedded
resources are full resources, I’ve put them in the partials array.

{

"verbose": {
"version": "0.4",
"prefixes": [
{
"prefix": "ea",
"href": "http://example.com/docs/rels/"
}
]I
"properties": {
"currentlyProcessing": 14,

"shippedToday": 20
by

"links": [

{
"rels": ["self"],
"href": "/orders"

}I

{
"rels": ["next" 1,
"href": "/orders?page=2"

}I

{
"rels": ["ea:admin" 1],

18 Chapter 1. Content

http://stateless.co/hal_specification.html

Verbose Documentation, Release 0.4.0

"href": "/admins/2",

"label": "Fred"
}I
{
"rels": ["ea:admin"],
"href": "/admins/5",
"label": "Kate"
}
]I
"includes": [
{
"rels": ["ea:order"],
"properties": {
"total": 30.00,
"currency": "USD",
"status": "shipped"
}V
"links": [
{
"rels": ["self"],
"href": "/orders/123"
}I
{
"rels": ["ea:basket" 1],
"href": "/baskets/98712"
}I
{
"rels": ["ea:customer"],
"href": "/customers/7809"
}
]
}I
"rels": ["ea:order" 1],
"properties": {
"total": 20.00,
"currency": "USD",
"status": "processing"
}I
"links": [
{
"rels": ["self" 1],
"href": "/orders/124"
by
{
"rels": ["ea:basket"],
"href": "/baskets/98713"
}I
{
"rels": ["ea:customer"],
"href": "/customers/12369"
}
1
}

1.4. Examples

19

Verbose Documentation, Release 0.4.0

Siren

This is taken from the example in the Siren spec. I took a little bit of liberty with this one and considered one of the
embedded entities to be a partial representation.

{

"verbose": {
"typesOf": ["order" 1],
"properties": {
"orderNumber": 42,
"itemCount": 3,
"status": "pending"
}I
"links": [
{
"rels": ["self" 1,
"href": "http://api.x.io/orders/42"
}I
{
"rels": ["previous"],
"href": "http://api.x.io/orders/41"
}I
{
"rels": ["next"],
"href": "http://api.x.io/orders/43"
}
]I
"actions": [
{
"name": "add-item",
"title": "Add Item",
"method": "POST",
"href": "http://api.x.io/orders/42/items",
"requestTypes": ["application/x-www—form-urlencoded"

"bodyParams": [

{

"name": "orderNumber",
"typesOf": ["number"],
"value": "42"
}I
{
"name": "productCode",
"typesOf": ["string"],
by
{
"name": "quantity",
"typesOf": ["number"]
}
]
}I
]I
"includes": [

{

"typesOf": ["items",
["http://x.io/rels/order—-items"
"http://api.x.io/orders/42/items"

"rels":
"href":

"typesOf": ["info",

"collection"

"customer"

1,

1,

i

1,

20

Chapter 1. Content

https://github.com/kevinswiber/siren#example

Verbose Documentation, Release 0.4.0

"rels": ["http://x.io/rels/customer" 1],
"properties": {
"customerId": "pjlz23",
"name": "Peter Joseph"
}I
"links": [
{
"rels": ["self"],
"href": "http://api.x.io/customers/pjl23"

Collection+JSON

"verbose" : {
"version" : "0.4",
"rels": ["collection" 1,
"href" : "http://example.org/friends/",
"links" : [
{
"rels" : ["feed"],
"href" : "http://example.org/friends/rss"
}
]I
"queries": [
{
"rels" : ["search"],
"href" : "http://example.org/friends/search",
"label" : "Search",
"queryParams" : [
{
"name" : "search",
"defaultvalue" : ""
}
1
}
]’
"includes" : [
{
"rels": ["item"],
"href" : "http://example.org/friends/jdoe",
"semantics" : [
{"name" : "full-name", "label" : "Full Name"},
{"name" : "email", "label" : "Email"}
JI
"properties": {
"full-name": "J. Doe",
"email": "Jjdoelexample.org"
}V
"transitions" : [
{
"rels" : ["blog" 1,

1.4. Examples 21

Verbose Documentation, Release 0.4.0

"href" : "http://examples.org/blogs/jdoe",
"label" : "Blog"
}I
{
"rels" : ["avatar"],
"href" : "http://examples.org/images/jdoe",
"label" : "Avatar",
"embedAs" : "image"
}
]
"rels": ["item"],
"href" : "http://example.org/friends/msmith",
"semantics" : [
{"name" : "full-name", "label" : "Full Name"},
{"name" : "email", "label" : "Email"}
]I
"properties": {
"full-name": "M. Smith",
"email": "msmith@example.org"
}I
"transitions" : [
{
"rels" : ["blog" 1,
"href" : "http://examples.org/blogs/msmith",
"label" : "Blog"
}I
{
"rels" : ["avatar" 1,
"href" : "http://examples.org/images/msmith",
"label" : "Avatar",
"embedAs" : "image"
}
1
"rels": ["item"],
"href" : "http://example.org/friends/rwilliams",
"semantics" : [
{"name" : "full-name", "label" : "Full Name"},
{"name" : "email", "label" : "Email"}
JI
"properties": {
"full-name": "R. Williams",
"email": "rwilliams@example.org"
by
"transitions" : [
{
"rels" : ["blog" 1,
"href" : "http://examples.org/blogs/rwilliams",
"label" : "Blog"
by
{
"rels" : ["avatar" 1,
"href" : "http://examples.org/images/rwilliams",
"label" : "Avatar",
"embedAs" : "image"

22

Chapter 1.

Content

Verbose Documentation, Release 0.4.0

}
1,

"templates" : [
{
"forEach": ["#" 1,
"rels": ["append"],
"method": "POST",
"fields" : [
{ "name" : "full-name", "defaultValue"
{ "name" "email", "defaultValue" mn,
{ "name" "blog", "defaultValue" ",
{ "name" "avatar", "defaultValue" ",
1
}I
{
"forEach": ["#/includes[rel=item]" 1],
"rels": ["update" 1],
"method": "PUT",
"fields" : [
{ "name" : "full-name", "defaultValue"
{ "name" "email", "defaultvalue" : "",
{ "name" "blog", "defaultValue" ",
{ "name" "avatar", "defaultValue" ",

JSON API

ll", lllabelll
"label" "Email"
"labelﬂ "Blogﬂ },
"label" "Avatar"
H", "labelﬂ
"label" "Email"
"labelll "Blogﬂ }’
"label" "Avatar"

"Full Name"
}s

"Full Name"
I

by

by

This takes the example from the JSON API page. There are several ways to do this in Verbose, so below are a couple

of different examples.

This example lets the templated links map its parameters to specific properties in the document.

{

"verbose": {
"version": "0.4",
"properties": {

"id": 1,
"title":
"author_id":
"comment_ids":
}I
"templatedLinks":
{
"typesOf": [
"hreft":
"uriParams":
{
"name":
"mapsTo":

[

"author",

[

[

[

"Rails is Omakase",
"9",

"5", "12", lll7ll, noon]

"people" 1,

"author_id",

"#/properties.author_id"

]

"http://example.com/people/{author_id}",

1.4. Examples

23

http://jsonapi.org/

Verbose Documentation, Release 0.4.0

"typesOf": ["comments"],
"hreft": "http://example.com/comments/{comment_id}",
"uriParams": [

{
"name": "comment_id",
"mapsTo": ["#/properties.comment_ids[]"]

1.4.2 Link Relation Example

Link Relation

"verbose": {
"version": "0.4",
"href": "http://example.com/rels/customers",
"title": "Customer Collection",
"description": "This is a collection of customers",
"typesOf": ["customers" 1,
"semantics": [
{
"title": "Total Customers",
"description": "The total number of customers in this collection.",
"name": "total_customers",

"typesOf": ["number"]
}
]’
"actions": [
{
"title": "Append Customer",
"description": "Action for adding a new customer",
"method": "POST",
"requestTypes": ["application/x-www—-form-urlencoded" 1],
"fields": [
{ "name": "first_name", "typesOf": ["string"], "label": "First Name" 1},
{ "name": "last_name", "typesOf": ["string"], "label": "Last Name" }

}
1,
"includes": [
{
"id": "customer",
"typesOf": ["customer" 1],
"rels": ["item"],
"semantics": [
{
"title": "First Name",
"description": "First name of customer",
"name": "first_name",

24 Chapter 1. Content

Verbose Documentation, Release 0.4.0

"typesOf"

"title":

"description":

"name" :
"types":
}
] r
"actions": [
{
"title":

"description":

"method":

"requestTypes": [

"fields":

{ "name":
{ "name":

|

"string"]

"Last Name",
"Last name of customer",

"last_name",

["string"]

"Update Customer",

"Action for adding a new",

"PUT",

"application/x-www—form-urlencoded" 1],
[

"first_name",
"last_name",

"typesOf": [
"typesOf": [

"string"
"string" 1],

1, "label":
"label":

"First Name" },
"Last Name" }

Resource Representation

"verbose": {
"version": "0.4",
"typesOf": [
"rels": ["http:/
"href":
"properties": {

"total_customers":

by
"includes": [
{
"rels": [
"typesOf": [
"href":
"rels": [
"properties":

"first_name":
"last_name":

"rels": [
"typesOf": [
"href":
"rels": [
"properties":

"first_name":

"last_name"

"customers" 1],

/example.com/rels/customers" 1],

"/customers",

45

"http://example.com/rels/customers#customer"],

"customer" 1,

"/customers/1",
"item"] ,

{
"John",
"Doe"

"http://example.com/rels/customers#customer" 1,

"customer" 1],

"/customers/2",
"item" 1,

{
"Jane",
: "Doe"

1.4. Examples

25

Verbose Documentation, Release 0.4.0

1.4.3 Profile

Profile

"verbose": {
"version":
"title":
"description":
"id" .
"rels": [
"queries": [

{

"customers

"igv.

"rels": [

"description":

"queryParams

{
"title":

"description":

"name" :

"title":

"description":

"name" :

}
1,
"includes": [
{
llid" .

"rels": [

"semantics":

{ "name":
"name":
"name" :
"name" :
"name":

—_ e e e

"collection"

"O.4",
"Collection of Customers",
"A collection of customers",

n
14

1,

"search",
"search" 1],

"Customer search",

" [

"Company Name",
"Company name search field",
"companyName"

"Email Address",
"Email address search field",
"email"

"customer",
"{tem"] ,
"description":

"Customer resource",
[
"companyName"
"firstName" 1},
"lastName" 1},
"email" 1},
"phone" }

by

26

Chapter 1. Content

Verbose Documentation, Release 0.4.0

Resource Representation

"verbose": {

"version": "0.4",
"id": "customers",
"rels": ["collection" 1],

"typeOf": "http://example.com/customersf#customers",

"links": [
{
"rels": ["profile"],
"href": "http://example.com/customers"
}
]I
"queries": [
{
"id": "search",
"rels": ["search" 1],

"typeOf": "http://example.com/customers#search",

"description": "Customer search",
"queryParams": [
{
"title": "Company Name",
"name": "companyName"

"title": "Email Address",
"name": "email"

}
]I
"includes": [
{
"typesOf": ["customer" 1],
"href": "/customer/1",
"rels": ["item"],

"typeOf": "http://example.com/customers#customer",

"properties": {
"companyName": "ACME, Inc.",
"firstName": "John",
"lastName": "Doe",
"email": "Jjohn@acme.com"

"typesOf": ["customer" 1],
"href": "/customer/2",
"rels": ["item"],

"typeOf": "http://example.com/customers#customer",

"properties": {
"companyName": "ACME, Inc.",
"firstName": "Jane",
"lastName": "Doe",
"email": "janeW@acme.com"

1.4. Examples

27

Verbose Documentation, Release 0.4.0

1.5 Schema

Warning: This schema is out of date. Do not use. Will be updated soon.

Provided here is a JSON schema for validating Verbose documents.:

{

"properties":{

"verbose": { "Sref": "#/definitions/verbose" }
}I
"definitions": {
"verbose": {
"allOof": [
{ "Sref": "http://hyperschema.org/extensions/hyperextend/link#" },
{ "Sref": "#/definitions/resource" }
]
}I
"resource": {
"properties": {
"semantics": {
"type": "array",
"items": { "S$Sref": "http://hyperschema.org/extensions/hyperextend/semantic#"
}I
"properties": {
"type": "object"
}I
"affordances": {
"type": "array",
"items": { "Sref": "http://hyperschema.org/extensions/hyperextend/affordance#"

br
"templates": {
lltypell: llarrayll’

"items": { "Sref": "http://hyperschema.org/extensions/hyperextend/resourcetemplate#"

by

"partials": {

"type": "array",

"items": { "Sref": "#/definitions/resource" }
bo
"includes": {

"type": "array",

"items": { "S$Sref": "#/definitions/resource" }
b
"errors": { "Sref": "#/definitions/resource" }

28 Chapter 1. Content

)

}

}

CHAPTER 2

Issues, Questions, Comments

If you find any issues, have any questions, or would like to comment on any aspect of the documentation or format
design, please so on the Github issue page.

29

https://github.com/smizell/verbose/issues

Verbose Documentation, Release 0.4.0

30 Chapter 2. Issues, Questions, Comments

CHAPTER 3

Contributing

The source for this documentation can be found on Github at https://github.com/smizell/verbose. To contribute, please
open a pull request. Thanks for checking out Verbose!

31

https://github.com/smizell/verbose

	Content
	Overview
	Status
	Specification
	Examples
	Schema

	Issues, Questions, Comments
	Contributing

